

 ARL-TR-7538 ● NOV 2015

 US Army Research Laboratory

Enhanced Experience Replay for Deep
Reinforcement Learning

by David Doria, Bryan Dawson, and Manuel Vindiola

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7538 ● NOV 2015

 US Army Research Laboratory

Enhanced Experience Replay for Deep
Reinforcement Learning

by David Doria, Bryan Dawson, and Manuel Vindiola
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

November 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2015
4. TITLE AND SUBTITLE

Enhanced Experience Replay for Deep Reinforcement Learning
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David Doria, Bryan Dawson, and Manuel Vindiola
5d. PROJECT NUMBER

R.0006163.13
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7538

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Deep reinforcement learning recently has performed very well in the task of learning control policies for Atari 2600 games.
Using raw frames taken directly from an Atari emulator, these systems train a convolutional neural network to interpret the
state of the game and select the optimal action. Temporal-difference Q-learning is used to train the network, and a memory of
state–action–reward transitions is kept and used in an experience-reply algorithm to increase training efficiency. Recent work
reports performance at or above the level of an expert human player in many of the games; however, when evaluating
behavior on a more qualitative level, there are major inconsistencies with the actions of an intelligent player. To improve these
behavioral characteristics, we introduce 3 new techniques: 1) we bias the experience-replay-selection step toward state
transitions that received a positive reward; 2) we compare newly observed states to a set of recently observed states and take a
random action rather than accept the action of the current policy if the states are similar to within a threshold; and 3) we only
perform the reinforcement learning updates on the topmost linear layers as experiences are generated. This report details these
techniques and preliminary results.

15. SUBJECT TERMS

machine learning, reinforcement learning

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Manuel Vindiola
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-9151
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Reinforcement Learning 1

2.1 Q-Networks 2

2.2 Experience Replay 2

3. Atari Deep Reinforcement Learning 3

3.1 Interpretation 4

3.2 Experience Storage 5

3.3 Testing 6

4. Contributions 6

4.1 Reward-Triggered Updates 6

4.2 Repetition Inhibition 7

4.3 Representation Pretraining 8

5. Future Work 9

6. Conclusions 9

7. References 10

Distribution List 11

iv

List of Figures

Fig. 1 Shown a) is a raw frame from “Breakout” and b) a preprocessed
frame.. 4

Fig. 2 Preprocessed frames that compose a state, stacked in temporally
descending order ... 5

Fig. 3 The basic structure of the DQN ... 5

Fig. 4 Pictured in a) is the random experience selection for a scheduled
update; pictured in b) is the selection of recent experiences for a
reward-triggered update. .. 7

Fig. 5 A sequence in which Frames 1 and 4 are identical, indicating a loop;
rather than follow the action policy for Frame 4, a random action
would be taken .. 8

Fig. 6 The fixed subnetwork of convolutional layers feeding into the
reinitialized sub-network of linear layers.. 9

List of Tables

Table 1 Legal actions for the game “Breakout” ... 3

Table 2 Relevant terms .. 6

1

1. Introduction

The Army of the future would like to reduce the burden on the Warfighter by
deploying autonomous systems on the battlefield. Unfortunately, designing systems
that can handle the dynamic and unpredictable conditions on the battlefield is
exceedingly difficult. Traditional techniques employ hard-coded rules, definitions,
and strategies that cannot adjust to the ever-changing environment. To address
these difficulties, researchers have turned to machine learning to model real-world
environments and develop systems that can learn and adapt with no prior
knowledge, human-encoded assumptions, or additional information about the
world. While we may be quite far from a system that can learn and adapt on its own
on the battlefield, some researchers have started to study video games as a simpler
proxy problem that relies on the same principles. The current state-of-the-art system
(Mnih et al. 2015) uses a convolutional neural network to automatically extract
relevant features from the video-game display, then uses reinforcement-learning
techniques to develop strategies that maximize the game score.

In this report, we provide a detailed description of the existing system, describe
several failure modes that we have observed, and present ideas for enhancements
that directly address some of the typical failures.

2. Reinforcement Learning

Machine-learning algorithms can be broadly divided into “supervised” and
“unsupervised” algorithms. Supervised algorithms rely on large collections of
hand-labeled training data and are usually used to solve problems that can be posed
as classification or regression tasks. On the other hand, unsupervised learning
algorithms are more data-centric—usually trying to automatically find patterns or
natural groupings in the data. Reinforcement learning is a particular unsupervised
learning method that attempts to develop an optimal action policy by taking actions
and observing the consequences of those actions. We will be working with the
particular flavor of reinforcement learning called “Q-learning” (Watkins and Dayan
1992). In Q-learning, each state of the system is assigned a Q-value that
corresponds to the expected future rewards associated with reaching that state.
Initially, the Q-values of all states are set to a random value to encourage
exploration of a state’s space. The agent chooses its next state, state S`, by choosing
the action that leads to the state with the highest associated Q-value. It then updates
the Q-value of its current state, S, by adding the immediate reward of choosing state
S' with the discounted sum of all possible rewards from being in state S'. This

2

procedure is described by the Bellman equation, shown in Eq. 1, and is the
fundamental equation of reinforcement learning.

 (1)

When the agent reaches a reward state, the previous state will be updated with real
information about the world. Over successive trips through the world toward
reward states, the agent transfers that real knowledge to further and further states,
developing an optimal action policy along the way.

2.1 Q-Networks

The standard reinforcement-learning procedure maintains an explicit mapping of a
particular state to a Q-value that estimates the future reward of being in that state,
typically in a table. However, in some cases the state–space is so large that
maintaining these explicit mappings is infeasible. In these cases, rather than
maintain a table of explicit mappings from states to rewards, an approximation
function is used (Baird 1995). One such realization of this function, known as a
Q-network, is implemented using a neural network (Tsitsiklis 1997). The network
is a function of the state and produces the Q-values of all of the possible actions as
output, as shown in Eq. 2. When such a network is updated using the standard back-
propagation method (Rumelhart 1986), its weights are adjusted in accordance with
the reinforcement-learning policy. For instance, if the optimal action produced by
the neural network for a given state generates suboptimal rewards, the weights
would be adjusted to diminish the desirability of that action for that state.

 (2)

2.2 Experience Replay

While the use of a neural network for reinforcement learning is helpful, it does not
come without problems. Neural networks are very sensitive to the distribution of
the learning data and reinforcement learning can introduce a poor data distribution
(Mnih et al. 2015). For example, in an “online” setting, the Q-value of a state is
updated in real-time as the agent explores the world. If in a particular region of the
state–space there is a dominant optimal action, the network may become biased
toward that action as the optimal action even in dissimilar situations. To counteract
this problem, a memory of past experiences (the state–action–reward information)
is stored during training and the network is updated “offline” using minibatches of
randomly sampled experiences. This alleviates the problem of poor
data distribution and allows the network to generalize learning across updates. It is

3

also useful for large state–spaces or in domains where it is difficult to generate new
experiences because the agent can repeatedly learn from past experiences.

3. Atari Deep Reinforcement Learning

The current, state-of-the-art, general game-playing system is the deep Q-network
(DQN) described by Mnih et al. (2015). It uses a convolutional neural network to
interpret frames from Atari 2600 games and define the action policy. It then uses
Q-learning and experience replay to update and train the network. The system is
connected to an Atari game emulator and the only input to the system is the current
frame, the game score, and whether the game is in a terminal state (the player has
“lost a life”). At the beginning of every game, the emulator executes a random
number of no-operation (NOOP) moves to ensure the game starts in a random
configuration. (See Table 1.) After the game information is passed into the system,
the emulator returns to the next action to be taken and executes that action—a cycle
that is repeated indefinitely until the game terminates. When a game terminates, a
new game is started and the observation–action process resumes. In the following
subsections we will describe the specific functionality of the Atari deep
reinforcement learner in reference to the video game “Breakout”.

In this game, the player controls a paddle and uses it to bounce an on-screen ball
and break bricks (as shown in Fig. 1a), accumulating a score. The player has 3 lives
and only loses a life if the ball “misses” the paddle and contacts the bottom of the
screen. If the player loses all 3 lives, the game is over.

Table 1 Legal actions for the game “Breakout”

Action Result
NOOP Do nothing

Fire Launch the ball
Left Move the paddle left

Right Move the paddle right

The learning system has 2 distinct phases to its operation: a random-exploration
phase and a learning phase. During the random-exploration phase, the system
selects actions at random and simply explores the world. This allows it to build up
a random distribution of initial experience to store in its memory for future updates.
During the learning phase, the system gradually reduces the number of random
actions while gradually increasing the number of decisions made by using the DQN.
During this phase, the system also makes periodic updates to the network using
minibatches of samples from the experience memory.

4

3.1 Interpretation

The frame returned from the emulator is 210 × 180 pixels with a 128-color palette
(Fig. 1a). To reduce the size of the input space, the frame is passed through a simple
preprocessor that scales the frame to 84 × 84 pixels and converts it to grayscale
(Fig. 1b). This greatly reduces the dimensionality of the input while preserving
most of the necessary information.

 a) b)

Fig. 1 Shown a) is a raw frame from “Breakout” and b) a preprocessed frame

The input to the DQN is the state of the game; however, a single preprocessed frame
is not sufficient to correctly interpret the game dynamics. For instance, it is
impossible to determine the movement of an enemy or the agent from a single
preprocessed frame. Therefore, the current state of the game is represented by
stacking the previous 3 preprocessed frames with the current preprocessed frame,
as shown in Fig. 2. This allows the DQN to extract contextual information from the
game and output meaningful action activations. The exact structure and
specifications of the DQN can be found in the “Methods” section of Mnih et al.
(2005), and a basic diagram of the DQN is shown in Fig. 3.

5

Fig. 2 Preprocessed frames that compose a state, stacked in temporally descending order

Fig. 3 The basic structure of the DQN

3.2 Experience Storage

An “experience” is defined as a preprocessed frame, the action that frame
generated, the reward the action generated, and whether the action generated a
terminal state. These values are stored in 4 separate lists and a single experience
can be retrieved by accessing the same index across all of the lists. When a
minibatch is prepared for a learning update, the system fills a buffer with randomly
selected experiences and then takes minibatch-sized chunks from the buffer. The
buffer is used until it is empty and then new experiences are randomly selected
again. It is important to note the experiences used to fill the buffer consist of stacks
of 4 preprocessed frames rather than individual preprocessed frames, as they will
be used as inputs to the DQN. In Table 2, we define all of the relevant terms to the
learning process.

6

Table 2 Relevant terms

Term Definition
Frames {frame1, frame2, frame3,, framei}
Actions {action1, action2, action3,, actioni}

Rewards {reward1, reward2, reward3,, rewardi}
Terminals {terminal1, terminal2, terminal3,, terminali}

Statei {Frames[i], Frames[i-1], Frames[i-2], Frames[i-3]}
Experiencei {State[i], Rewards[i], Actions[i], Terminals[i]}

3.3 Testing

During the learning phase, we begin updating the DQN and periodically saved the
network to a file. To evaluate the performance of the system, the DQN can be
loaded from that file and used to play the game (with its weights remaining constant
throughout the game play). The system will still save experiences to memory but
only so it can generate the 4 frame stacks to pass to the DQN to properly perceive
the state of the game. The testing procedure can also display the current frame from
the emulator to display the game to the user in real-time, and optionally save the
frames to a file for future playback.

4. Contributions

Upon qualitatively evaluating the fully trained system, we noticed a behavior
(across several games) that was inconsistent with our goal of automatically learning
the objectives and strategies of a game. We found that although the system initially
seemed to play the game extremely well, it would eventually get stuck in an infinite
loop where the agent would neither die nor continue achieving the game objective
(e.g., breaking bricks in the game “Breakout”). This type of behavior indicates that
the system has not learned what we would expect it to learn—to play and beat the
game—but rather has learned to simply keep playing or to not die. In this section
we present several novel modifications to the system that attempt to address this
issue.

4.1 Reward-Triggered Updates

During the learning process, updates to the network use randomly sampled
experiences from the past. In general, there are orders-of-magnitude more training
sequences that are unsuccessful and do not lead to rewards than there are successful
action sequences. These experiences are all useful to learn general game knowledge
(dynamics, etc.), but this does not place emphasis on learning which actions lead to
rewards, which is a critical part of learning a strategy. In addition, most games have

7

a delayed reward signal, meaning there is a temporal gap between the action that
actually leads to the reward and when the system experiences that reward.
Therefore, when the system learns from an experience that has a positive reward
associated with it, the true reward action is actually at some point in the (perhaps
recent) past. To reduce the extreme ratio of “successful” to “unsuccessful” training
sequences, we introduced reward-triggered updates. This allows the system to
intentionally learn directly from the sequence of actions that lead to a reward. When
the system experiences a reward, it stores that experience for later use but it also
triggers a minibatch update to the DQN using minibatch-sized recent experiences.
The update function is defined as where N is a network and E is a set of
experiences (see Eq. 3). Then the iterative update equation becomes

 (3)

where S is the set of experiences in the normal schedule; R is the set of recent
experiences; and r is the reward. (Fig. 4 depicts experience selections.)

 a) b)

Fig. 4 Pictured in a) is the random experience selection for a scheduled update; pictured in
b) is the selection of recent experiences for a reward-triggered update.

4.2 Repetition Inhibition

As noted earlier, we found the system tended to get stuck in infinite action loops
during testing. However, since each iteration of training is equivalent to a testing
procedure, the system experiences these loops during training as well. While there
is a small chance of taking a random action in later stages of training, if the system
were to get stuck in an infinite loop, it would likely persist for long enough that the

8

experience memory would be saturated with the same subset of experiences. In
turn, the DQN would be updated using that same subset of experiences and would
cease learning anything useful until the system found its way out of the loop. To
address this, we check the current preprocessed frame against recently encountered,
preprocessed frames. If the distance (Eq. 4: L2 pixel-wise distance) between the
current frame and a previous frame is below a threshold, rather than follow the
current policy we would take a random action and attempt to break out of the loop.
This choice is described in Eq. 5 and illustrated in Fig. 5.

 (4)

 (5)

Fig. 5 A sequence in which Frames 1 and 4 are identical, indicating a loop; rather than
follow the action policy for Frame 4, a random action would be taken

4.3 Representation Pretraining

The convolutional neural network employed by the system is responsible for 2
distinct operations: interpreting the visual output of the game (convolutional layers)
and defining the action policy (linear layers). When the network is updated using
standard error back-propagation, the weights throughout the entire network are
adjusted. This update procedure therefore is simultaneously trying to learn a good
representation and a good action policy. During the experience-replay phase, the
system learns with past experiences as inputs on the assumption the network has
updated its learning policy (but not its representations); so, there may be more
information to be gathered by examining those past experiences again. However,
since the representations have also been changed, there is now a difference in how
the system perceives those past experiences, reducing the amount that can be
learned from the updated learning policy.

9

To address this, we train a full network until it reaches an acceptable level of
performance and then separate the convolutional layers from the remainder of the
network. We then reinitialize and train the linear layers using the separated
convolutional layers as a fixed subnetwork whose output is used as the input to the
linear layers responsible for defining the action policy, as shown in Fig. 6. When
an update occurs, we only adjust the linear network, which modifies the action
policy without the requirement of relearning the representations. Once the
representations have been learned once, this technique results in a substantial
decrease in training time, from 12 days to only 1 day, allowing further
experimentation without enormous delays in the design and testing cycle.

Fig. 6 The fixed subnetwork of convolutional layers feeding into the reinitialized sub-
network of linear layers

5. Future Work

In future work, we will develop and perform quantitative-analysis techniques to
better understand the effects of these modifications on the system. For example, we
will examine the reward distributions (the number of times the system reaches some
number of rewards before terminating) to determine which regions of the
state–space the game is in during the majority of the training. We will also evaluate
these techniques on more games, where we would expect to see a greater increase in
performance as the complexity of the games increase. Finally, we will explore
additional ideas that specifically address the problem of the delayed reward signal
and how to correlate sequences of actions with rewards.

6. Conclusions

We have detailed the current state-of-the-art system for automatically learning
action policies to play simple video games. After noting a serious shortcoming of the
current system, we have introduced and studied 3 enhancements to mitigate this
problem and have given a preliminary evaluation of their effect. Though we have not
yet observed dramatic improvements in performance, we are hopeful that these
techniques—coupled with future improvements—will enable the system to obtain a
higher level of awareness and knowledge about the game dynamics and goals.

10

7. References

Baird L. Residual algorithms: reinforcement learning with function approximation.
Proceedings of the 12th International Conference on Machine Learning; 1995;
San Francisco (CA). p. 30–37.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A,
Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control through
deep reinforcement learning. Nature. 2015;518:529–533.

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature. 1986;323:533–536.

Tsitsiklis JN, Van Roy B. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control. 1997;42(5):674–
690.

Watkins CJCH, Dayan P. Q-learning. Mach Learn. 1992;8:279–292.

11

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 DIR USARL
 (PDF) RDRL CIH S
 J INFANTOLINO
 M VINDIOLA

 12

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	1. Introduction
	2. Reinforcement Learning
	2.1 Q-Networks
	2.2 Experience Replay

	3. Atari Deep Reinforcement Learning
	3.1 Interpretation
	3.2 Experience Storage
	3.3 Testing

	4. Contributions
	4.1 Reward-Triggered Updates
	4.2 Repetition Inhibition
	4.3 Representation Pretraining

	5. Future Work
	6. Conclusions
	7. References

